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Abstract

A framework for stabilizing the low-frequency instability
that arises in electro-quasistatic field simulations, under
the presence of non-conducting material, is developed.
The resulting symmetric formulations rely on penalization
for imposing the electric Gau® law in void, and hence,
they constitute approximations of continuously extended
problems. Real and imaginary penalty-weights are stud-
ied numerically, in terms of accuracy and conditioning.

1 Introduction

Electro-quasistatic (EQS) fields-models [1] encapsulate
resistive and capacitive phenomena at low frequencies.
The validity regime of EQS field-models includes high-
voltage components, such as, cables, long-rod insula-
tors, and surge arresters. In a numerical setting [2], the
discrete EQS operators become increasingly badly-con-
ditioned with decreasing frequency for domains that con-
tain non-conductive material, and hence, they result in
low-frequency (LF) instabilities that can be tracked down
to the lack of uniqueness of EQS fields in the static limit
w = 0. To cure the resulting numerical instability, various
stabilization strategies have been proposed, such as, the
generating system approach [3]. Here, a LF-stabilization
framework that is based on penalizing the electric Gauly
law in void is documented and its performance is numer-
ically assessed.

To introduce the setting of a typical EQS field problem,
consider an open, bounded, and simply-connected do-
main Q whose boundary is Lipschitz, such as the domain
that is depicted in Fig. 1. Suppose that Q is free from
sources and it constitutes of two subdomains Qy and Q.
whose constant conductivities are oy = 0 and o > 0, re-
spectively. The time-harmonic EQS problem of interest is

V- (kVep) =0in Q, (1)

(per = 07 <P|Fs = Ps, angall—‘l = O' (2)

where ¢ is the sought scalar EQS potential and x = ¢ +
iwe, with o being the electrical conductivity, i being the
imaginary unit, w = 2rnf being the angular frequency,
and ¢ being the subdomain-wise constant permittivity.
The boundary [§; is grounded, while I's supplies potential

@s > 0, and [ is insulating. Provided that (:,-)o denotes
the standard inner product on L2(£), the variational form
of EQS problem (1), (2) reads: find ¢ € H1(Q) such that
¢|lc =0, ¢|Is = s, and

(lwegVe, ViP) g, + (KVe, ViP)g, = 0 (©)

for all € H1(Q) that vanish on T and Ts. Although well-
posedness of EQS problem (3) follows from the Lax-Mil-
gram theorem for all real w > 0, the w-weighted volume
integral over Qy is nearly vanishing in the LF-regime and
the resulting discrete operators are expected to be badly-
conditioned.
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Figure 1. Conceptual setting for problem (1), (2), where
Qy is void and () is occupied by conducting material.

2 Continuous Extension and Stabilization

Continuous extensions have been introduced in various
contexts, such as in domain decomposition [4] and in fic-
titious-domain methods [5, 6]. Here, the EQS data on the
interior conducting interfaces are continuously extended
in void, with the electric Gaul} law, for stabilizing the EQS
problem in the LF-regime. To briefly justify the LF-stabi-
lized EQS problem below, choose test functions that van-
ish in Q. and observe that equation (3) takes the form
(&Y, Vih)q, = 0 for all y that vanish in Q¢ U 90 and all

positive frequencies, while

w =0 (gV, Vih)g, =0, 4)

according to the electric GauR law V - (¢,V¢p) = 0. Hence,
the EQS potential can be continuously extended from the
conducting interface 90 into Qy, with the boundary value
problem: find ¢y € H1(Qy) such that ¢y|3Q: = ¢| Q¢
and

(&0Vov, Vip)g, = 0 (%)



For all € H1(Q) that vanish on d(Q. By relaxing the test
functions in H1(Qy) and adding an a-multiple of (5) to (3),
with complex a # 0, the LF-stabilized equation

((iw + )&V, Vip) )+ (kVep, Vih)g = 0 (6)

is obtained. The solution to problem (6) is expected to be
proximal to that of problem (3), with differences that
emerge from the fact that the relaxation of the test func-
tions yields (,Voy, Vih)g, = (£00,0v, ¥)aq.- It is worth
pointing out that for Re(a) > 0 and Im(a) = 0, the LF-sta-
bilization introduces an artificial conductivity o, = ag, in
void, while the choice Re(a) = 0 and Im(a) > 0 modifies
the frequency in void according to w|Qy = w + |a|.

3 Numerical Experiments

The accuracy and the conditioning of the LF-stabilized
EQS problem are studied for the three-dimensional test-
case capacitor that is depicted in Fig. 2, where the values
gc =& = 8.854-10712 F/m, o, = 10°S/m, and ¢g = 1V
are used.
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Figure 2. The computational mesh and the real part of the
potential that is obtained with problem (3) for f = 50 Hz.

To perform numerical experiments, a three-dimensional
mesh is generated by a z/2-rotation of a two-dimensional
mesh, using ten layers. The discrete finite-element oper-
ators are assembled with first-order Lagrangian elements
and the resulting number of degrees of freedom is ap-
proximately 3 - 10°. Accuracy is assessed by solving the
linear systems that are associated with both problems (3)
and (6), using a direct solver, and afterwards, computing
the relative differences

ep(@) = lIp(9) = p(P)lla/llp(@lla. (7)

where p € {Re,Im} and ||-||, is the standard L?()-norm.
In Fig. 3, e, () is plotted for a € {10°,10", ..., 10"}, using
log- log scale. The conditioning is assessed by estimating
the condition number, see Fig. 4. In the full paper, similar
experiments will be presented for imaginary a-values, for
various conductors, for a wider range of frequencies, and
for more suitable test-problems, whenever possible.
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Figure 3. The relative differences eg.(a) for the fre-
quency-values that are mentioned at the legend.
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Figure 4. An estimate of the condition number relative to
the maximum condition number.
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