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Abstract 

A framework for stabilizing the low-frequency instability 
that arises in electro-quasistatic field simulations, under 
the presence of non-conducting material, is developed. 
The resulting symmetric formulations rely on penalization 
for imposing the electric Gauß law in void, and hence, 
they constitute approximations of continuously extended 
problems. Real and imaginary penalty-weights are stud-
ied numerically, in terms of accuracy and conditioning. 

1 Introduction 

Electro-quasistatic (EQS) fields-models [1] encapsulate 
resistive and capacitive phenomena at low frequencies. 
The validity regime of EQS field-models includes high-
voltage components, such as, cables, long-rod insula-
tors, and surge arresters. In a numerical setting [2], the 
discrete EQS operators become increasingly badly-con-
ditioned with decreasing frequency for domains that con-
tain non-conductive material, and hence, they result in 
low-frequency (LF) instabilities that can be tracked down 
to the lack of uniqueness of EQS fields in the static limit 
𝜔 = 0. To cure the resulting numerical instability, various 
stabilization strategies have been proposed, such as, the 
generating system approach [3]. Here, a LF-stabilization 
framework that is based on penalizing the electric Gauß 
law in void is documented and its performance is numer-
ically assessed. 

To introduce the setting of a typical EQS field problem, 
consider an open, bounded, and simply-connected do-
main Ω whose boundary is Lipschitz, such as the domain 
that is depicted in Fig. 1. Suppose that Ω is free from 
sources and it constitutes of two subdomains Ω! and Ω" 
whose constant conductivities are 𝜎! = 0 and 𝜎" > 0, re-
spectively. The time-harmonic EQS problem of interest is 

∇ ⋅ (𝜅∇𝜑) = 0 in Ω,    (1) 

𝜑|Γ# = 0,		𝜑|Γ$ = 𝜑$,		𝜕%𝜑|Γ& = 0,  (2) 

where 𝜑 is the sought scalar EQS potential and 𝜅 = 𝜎 +
i𝜔𝜀, with 𝜎 being the electrical conductivity, i being the 
imaginary unit, 𝜔 = 2𝜋𝑓 being the angular frequency, 
and 𝜀 being the subdomain-wise constant permittivity. 
The boundary Γ# is grounded, while Γ$ supplies potential 

𝜑$ > 0, and Γ& is insulating. Provided that (⋅,⋅)' denotes 
the standard inner product on 𝐿((Ω), the variational form 
of EQS problem (1), (2) reads: find 𝜑 ∈ 𝐻)(Ω) such that 
𝜑|Γ# = 0, 𝜑|Γ$ = 𝜑$, and  

(i𝜔𝜀*∇𝜑, ∇𝜓)'! + (𝜅∇𝜑, ∇𝜓)'" = 0  (3) 

for all 𝜓 ∈ 𝐻)(Ω) that vanish on Γ# and Γ$. Although well-
posedness of EQS problem (3) follows from the Lax-Mil-
gram theorem for all real 𝜔 > 0, the 𝜔-weighted volume 
integral over Ω! is nearly vanishing in the LF-regime and 
the resulting discrete operators are expected to be badly-
conditioned. 

 
Figure 1. Conceptual setting for problem (1), (2), where 
Ω! is void and Ω" is occupied by conducting material. 

2 Continuous Extension and Stabilization 

Continuous extensions have been introduced in various 
contexts, such as in domain decomposition [4] and in fic-
titious-domain methods [5, 6]. Here, the EQS data on the 
interior conducting interfaces are continuously extended 
in void, with the electric Gauß law, for stabilizing the EQS 
problem in the LF-regime. To briefly justify the LF-stabi-
lized EQS problem below, choose test functions that van-
ish in Ω" and observe that equation (3) takes the form 
(𝜀*∇𝜑, ∇𝜓)'! = 0 for all 𝜓 that vanish in Ω" ∪ 𝜕Ω" and all 
positive frequencies, while 

𝜔 = 0 ⇒ (𝜀*∇𝜑, ∇𝜓)'! = 0,   (4) 

according to the electric Gauß law ∇ ⋅ (𝜀*∇𝜑) = 0. Hence, 
the EQS potential can be continuously extended from the 
conducting interface 𝜕Ω" into Ω!, with the boundary value 
problem: find 𝜑! ∈ 𝐻)(Ω!) such that 𝜑!| ∂Ω" = 𝜑| ∂Ω" 
and 

(𝜀*∇𝜑!, ∇𝜓)'! = 0    (5) 



For all 𝜓 ∈ 𝐻)(Ω) that vanish on 𝜕Ω". By relaxing the test 
functions in 𝐻)(Ω!) and adding an 𝛼-multiple of (5) to (3), 
with complex 𝛼 ≠ 0, the LF-stabilized equation 

A(i𝜔 + 𝛼)𝜀*∇𝜙, ∇𝜓C'! + (𝜅∇𝜙, ∇𝜓)'" = 0  (6) 

is obtained. The solution to problem (6) is expected to be 
proximal to that of problem (3), with differences that 
emerge from the fact that the relaxation of the test func-
tions yields (𝜀*∇𝜑!, ∇𝜓)'! = (𝜀*𝜕%𝜑!, 𝜓)+'". It is worth 
pointing out that for Re(𝛼) > 0 and Im(𝛼) = 0, the LF-sta-
bilization introduces an artificial conductivity 𝜎, = 𝛼𝜀* in 
void, while the choice Re(𝛼) = 0 and Im(𝛼) > 0 modifies 
the frequency in void according to 𝜔|Ω! = 𝜔 + |𝛼|. 

3 Numerical Experiments 

The accuracy and the conditioning of the LF-stabilized 
EQS problem are studied for the three-dimensional test-
case capacitor that is depicted in Fig. 2, where the values 
𝜀" = 𝜀* ≅ 8.854 ⋅ 10-)(	F/m, 𝜎" = 10.	S/m, and 𝜑$ = 1	V 
are used. 

     
Figure 2. The computational mesh and the real part of the 
potential that is obtained with problem (3) for 𝑓 = 50	Hz. 

To perform numerical experiments, a three-dimensional 
mesh is generated by a 𝜋/2-rotation of a two-dimensional 
mesh, using ten layers. The discrete finite-element oper-
ators are assembled with first-order Lagrangian elements 
and the resulting number of degrees of freedom is ap-
proximately 3 ⋅ 10/. Accuracy is assessed by solving the 
linear systems that are associated with both problems (3) 
and (6), using a direct solver, and afterwards, computing 
the relative differences 

𝑒0(𝛼) = ‖𝑝(𝜑) − 𝑝(𝜙)‖'/‖𝑝(𝜑)‖',  (7)     

where 𝑝 ∈ {Re, Im} and ‖⋅‖' is the standard 𝐿((Ω)-norm. 
In Fig. 3, 𝑒0(𝛼) is plotted for 𝛼 ∈ {10*, 10), … , 10)*}, using 
log-	log scale. The conditioning is assessed by estimating 
the condition number, see Fig. 4. In the full paper, similar 
experiments will be presented for imaginary 𝛼-values, for 
various conductors, for a wider range of frequencies, and 
for more suitable test-problems, whenever possible. 
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Figure 3. The relative differences 𝑒12(𝛼) for the fre-
quency-values that are mentioned at the legend. 

 
Figure 4. An estimate of the condition number relative to 
the maximum condition number. 
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